Аэродинамические силы. Коэффициент Cx

Для многих из нас понятие "тюнинг" обязательно включает в себя навеску спойлеров и антикрыльев. Притом не меньшему количеству людей известно, что идеальная обтекаемая форма напоминает каплю. Да и в конструкторских бюро зарплату платят не просто так. Что же мешает конструкторам с самого начала либо сделать автомобиль каплевидным, либо навесить на него все эти спойлеры, раз уж они так хороши?

Вам никогда не приходилось летать на машине? Не в смысле "очень быстро ездить", а именно летать. Если приходилось - поздравляем с тем, что вы это пережили. Если нет, то можете сказать спасибо аэродинамике. И тому, что вашу машину решили сделать чуть менее экономичной, но зато более устойчивой.


Аэродинамические силы

Описывать воздействие воздуха на автомобиль принято тремя составляющими, которые направлены по продольной оси машины (X), перпендикулярно к ней по горизонтали (Y) и вертикали (Z). При движении особенно важны сопротивление воздуха и подъемная или прижимающая силы. Заметное воздействие боковой составляющей может появиться только в случае очень несимметричного кузова, что редкость, либо при боковом ветре - а это довольно сложно предсказать.

Критическое воздействие на автомобиль боковой ветер может оказать, если создаст разворачивающий или кренящий момент. Для машин большой площади, как минивэны, это неизбежно.

Главная проблема, которую решают при отработке аэродинамики, - снижение лобового аэродинамического сопротивления. Вам наверняка приходилось идти против ветра, и вы замечали, что с ростом скорости увеличивается и сопротивление воздуха. То же происходит и с автомобилем, причем гораздо более ощутимо из-за больших размеров и скорости. Сопротивление воздуха рассчитывается по формуле:

F=0,5*Cx*S*p*v2

S - площадь проекции автомобиля на вертикальную плоскость. p - плотность воздуха. V - скорость. Она в этой формуле в квадрате - то есть когда машина разгоняется с 60 до 120 км/ч аэродинамическое сопротивление возрастает вчетверо. Audi A8 при движении на максимальной скорости в 250 км/ч только на преодоление сопротивления воздуха нужно 191 л.с., а на 300 км/ч эта машина тратила бы только на это 331 л.с.

Коэффициент Cx (в английском его обозначают Cd, а в немецком - Cw) определяется экспериментально, и он-то и есть главная величина, которая описывает аэродинамическое совершенство кузова. Когда-то его условно приравняли к 1,0 для круглой пластины, однако, как выяснилось на практике, из-за турбулентности за пластиной на самом деле ее Cx равен примерно 1,2. Самый низкий Cx у капли - примерно 0,05.

 


При нормальной эксплуатации автомобиля важнее всего его сопротивление: именно оно оказывает существенное влияние на расход топлива. Снизить его можно двумя способами: либо улучшить форму (что выразится в снижении Cx), либо уменьшить поперечное сечение машины. Вертикальные силы могут быть полезными, если действуют вниз, и вредными, если способствуют подъему машины. С боковыми все еще сложнее. Они трудно предсказуемы, а их причины разнообразны: поворот, порыв ветра, смена профиля местности. Зато влияние они оказывают небольшое.

О важности аэродинамики задумались еще в начале XX века, и уже тогда появились первые модели с улучшенной аэродинамикой. Некоторые из них были сделаны в форме капли - она и обрела свою форму именно ради проникновения сквозь воздух. Однако уже тогда стало понятно, что ездить в такой машине неудобно. Поэтому в серийных автомобилях стали использовать отдельные элементы каплевидной формы: делать покатый задок и округлять переднюю часть. Топливный кризис семидесятых сделал вопрос аэродинамики особенно актуальным. Примерно в это время практически все автопроизводители обзавелись специальными лабораториями для изучения аэродинамики. Самый сложный и дорогостоящий элемент таких лабораторий - аэродинамическая труба. В ней макеты и реальные автомобили обдуваются очень сильными потоками воздуха. Это позволяет изучить все особенности формы кузова любого автомобиля. Так удалось достигнуть многого: у большинства современных серийных автомобилей этот коэффициент обычно равен 0,30-0,35, самые совершенные достигают значений 0,26-0,27. Хотя на самом деле он зависит от скорости, направления движения относительно воздуха или состояния поверхности кузова, и приведенные значения - можно сказать, идеал, которого может достичь данная модель.


Аэродинамические элементы

Однако низкое лобовое сопротивление иногда не слишком важно. Болиды "Формулы-1", как ни странно, имеют Cx от 0,75 до 1,0! Большую часть сопротивления создают открытые колеса. Но дело даже не в этом. Для них важнее другие параметры и прежде всего - прижимная сила. Для реализации огромного крутящего момента двигателя необходимо хорошее сцепление колес с дорогой, а также устойчивость в повороте. Поэтому для F1, да и для остальных гоночных и спортивных автомобилей хорошая аэродинамика означает отсутствие подъемной силы и наличие прижимной. Обеспечить это самой формой кузова сложно, поэтому в ход идут дополнительные аэродинамические элементы: спойлеры и антикрылья. Первые просто отражают или перенаправляют поток воздуха. А вот если элемент обтекается воздухом со всех сторон, то это антикрыло.

Чаще всего для снижения подъемной силы используют спойлеры под передним бампером и на крышке багажника. Отсекая часть потока, идущего под машину, передний спойлер снижает давление в этой зоне, так что машина, грубо говоря, присасывается к дороге. Когда-то на гоночных автомобилях Chaparral Джим Холл даже ставил вентиляторы для отсасывания воздуха из-под днища, но затем такое решение было запрещено правилами. Спойлер на крышке багажника ставят не только ради создания прижимной силы, но и для организации срыва воздушного потока до того, как он начнет образовывать вихри за машиной, которые увеличивают сопротивление воздуха. А вот антикрыло работает на создание прижимной силы в чистом виде. Оно имеет сходный с обычным крылом профиль, но перевернуто. Кстати, располагаться оно может где угодно, даже под днищем. Как на BMW Z1, где его роль выполнял... глушитель. Он расположен поперечно и имеет аэродинамический профиль.

От этих элементов мало проку в пробке, да и при обычном движении в городе. Заметный эффект они создают только при скоростях порядка 120 км/ч и выше. При этом надо иметь в виду, что выигрывая в одном, мы можем проиграть в другом. Работающий на создание прижимной силы воздух создает более заметное сопротивление, поэтому максимальная скорость машины с аэродинамическим обвесом скорее всего будет ниже, а расход топлива - больше. Правда, если автомобилем занимались всерьез, то скорее всего и мотор у него будет помощнее, и передаточные числа трансмиссии другие, так что проигрыш будет компенсирован.

Но это все про тот случай, когда аэродинамические элементы действительно хоть как-то проверяли и настраивали. Сейчас доводкой автомобилей занимаются все кому не лень, можно найти варианты на любой вкус и кошелек. И многие из них делают в буквальном смысле "на глазок". Они хороши в тех случаях, если вам просто нужно изменить внешность машины. Если относиться к делу всерьез, то нужно выбирать комплекты, которые уже опробованы -- продуты в аэродинамической трубе, что вообще-то стоит недешево, или испытаны на полигоне. И лучше будут именно комплекты, детали которых рассчитаны на совместную работу.


Параллельные потоки

Доводка кузова с точки зрения аэродинамики часто имеет целью не только снижение расхода топлива или улучшение устойчивости. Гораздо заметнее типичному автовладельцу другие аспекты обтекания кузова воздухом. Например, насколько это сказывается на загрязнении кузова. Это касается зоны, где располагаются ручки дверей, и, конечно, заднего стекла. Иногда вопрос решается как бы сам собой. На "Москвиче-2141" были подобраны такой угол наклона двери багажника и длина крыши, что грязь туда просто не попадает. Не попадала она и на заднее стекло "Таврии" - только там его защищал маленький щиток под бампером. А вот на "самарах" 2108 и 2109 этот вопрос пришлось решать с помощью "дворника". Ради улучшения прижимной силы на крыше отформовано ребро. На нем воздушный поток срывается, и образуется зона пониженного давления, в нее засасываются брызги из-под машины. Можно перенаправить поток козырьком, но... тогда исчезает полезный эффект от ребра на крыше. Решайте сами, что для вас важнее: управляемость и ограничение видимости назад или чистое стекло и заметно возрастающий риск заноса на высокой скорости. Кстати, частично вопрос можно решить с помощью боковых дефлекторов.

Некоторые аэродинамические элементы становятся деталями фирменного стиля. В течение многих лет задние фонари на Mercedes-Benz имели ребристую поверхность. Грязь оседала на выступающих ребрах, оставляя чистыми участки между ними, и свет стоп-сигналов и габаритов был виден лучше. Вот до каких глубин может дойти пытливая мысль конструкторов!

 

Что делать

Как уже говорилось ранее, в основном, аэродинамическое сопротивление автомобиля - это сопротивление давления. Чем больше поверхностей автомобиля находятся перпендикулярно к направлению набегающего воздушного потока - тем больше коэффициент лобового аэродинамического сопротивления - Cx.

Что делают производители автомобилей чтобы уменьшить Cx? Ответ напрашивается сам собой - они уменьшают поперечное сечение автомобиля настолько, насколько позволяют утвержденные для конкретного автомобиля размеры и/или улучшают его форму. Среднестатистический коэффициент лобового сопротивления для автомобиля равен 0.37-0.34. За отправную точку в расчете берется сопротивление давления для круглой пластины, естественно - перпендикулярной потоку, он равен 1(позднее выяснилось, что из-за турбулентности потоков за кромкой и, соотвественно, возникновением сопротивления трения он равен 1.2).

Проработка аэродинамики некоторых моделей автомобилей настолько высока, что их Cx может быть намного меньше - к примеру, для нынешней модели Audi A8 он составляет всего 0.27, а у Lexus LS 460 и вовсе рекордный для серийных четырехдверных седанов - 0.26.

Логично предположить, что аэродинамика суперкаров еще более совершенна. Однако это не совсем так. В качестве наглядного примера можно взять последний Porsche 911 Turbo серии 997. Его коэффициент равен 0.31. Много? Инженеры компании просто счастливы что им удалось добиться таких низких показателей и гордятся этим.Все дело в том, что в отличие от обычных автомобилей двигатель среднестатического суперкара нужно охлаждать гораздо большими объемами воздуха. Однако эти объемы, как это ни странно не берутся из...да, да его самого. Дополнительные кубометры поступают в моторный отсек из крупных дополнительных радиаторов, которые(правильно!) весьма существенно увеличивают поперечное сечение автомобиля и как результат - Cx. Тот же эффект оказывают и широкие крылья вкупе с огромными шинами и заднее антикрыло. У лучших образцов суперкаростроения коэффициент Cx доходит до 0.40-0.42(!) Именно такие цифры демонстрирует известный всем Bugatti Veyron.

Однако, бывают и исключения. К примеру специалистам, работавшим над аэродинамикой нового Nissan GT-R удалось добиться коэфициента 0.27 - и это при том, что даже на высокой скорости автомобиль прижимается к дороге и передней и задней осью, а интеркулер турбины достаточно охлаждается набегающим воздушным потоком. Именнл благодаря оптимизации аэродинамики, по заявлениям конструкторов, им удалось добится тех потрясающих результатов на трассе Нюбургринг - всемирно известном "бенчамарке" для спортивных машин.

А что дает маленькое поперечное сечение и проработанная форма обычным автомобилям, не ставящим рекорды? Ответ прост и очевиден - топливную экономичность. Инженеры ведущих автомобильных фирм бьются над созданием рекордно экономичных автомобилей, которые без труда вписаться в ужесточающиеся экологические нормы и привлечь сотни тысяч покупателей не желающих выбрасывать деньги в трубу. К примеру, разработанный компанией Volkswagen для покорения "литрового" рубежа расхода на 100 км прототип VW 1-L обладает Cx равным 0.153. В будущем, такие автомобили получат широкое распространение, а пока можно воспользоваться более "народными" способами улучшение аэродинамики.

Воспользуемся приведенными выши базовыми принципами аэродинамической инженерии. Во-первых, можно попробовать уменьшить поперечное сечение. Дополнительные зеркала, "мухобойники", корпусные противотуманки, многочисленные антены, брызговики - убираем все это и гарантированно получаем лишний литр на 100 км/пути при скорости в 150 км/ч. Не помешает и умеренное открытие окон, ведь забегающие в салон на большой скорости воздушные потоки создают лишние вихри, на которые наталкиваются последующая "порция" потока.

 

Теги: аэродинамика, коэффициент Cx, тюнинг, устройство авто

Читайте также:
Значения значков на приборной панели автомобиля, о которых вы всегда стеснялись спросить
09.09.2016
Значения значков на приборной панели автомобиля, о которых вы всегда стеснялись спросить
Этапы развития полного привода
12.06.2014
Этапы развития полного привода
Развитие системы ABS: из самолета в автомобиль
16.12.2013
Развитие системы ABS: из самолета в автомобиль
Что значит цвет дыма из выхлопной трубы?
19.07.2013
Что значит цвет дыма из выхлопной трубы?
Audi – ведущий бренд в технологиях освещения
06.02.2013
Audi – ведущий бренд в технологиях освещения
Немцы придумали руль будущего
25.01.2013
Немцы придумали руль будущего
Toyota и Audi покажут на CES 2013 самоуправляемые автомобили
05.01.2013
Toyota и Audi покажут на CES 2013 самоуправляемые автомобили
Google Maps и Places появятся в новых автомобилях Kia
04.01.2013
Google Maps и Places появятся в новых автомобилях Kia
Автомобили Hyundai можно будет открывать смартфоном
27.12.2012
Автомобили Hyundai можно будет открывать смартфоном
больше новостей »
Комментарии посетителей

Турбина с изменяемой геометрией

Турбина с изменяемой геометрией

Турбина с изменяемой геометрией избавила дизельный двигатель от пресловутой «турбоямы». Идея, заложенная в конструкцию, настолько проста, что могла бы прийти в голову даже школьнику...

Электромоторы в автомобилях: устройство и тенденции развития

Электромоторы в автомобилях: устройство и тенденции развития

Электромобили и гибриды делают нашу жизнь интереснее, а инженеров заставляют разрабатывать новые конструкции и выдвигать новые идеи. Autoexpert.in.ua решил разобраться в конструкциях электромоторов и разузнать последние тенденции в этой сфере.

Муфта Haldex: история развития

Муфта Haldex: история развития

Названная по имени фирмы производителя муфта Haldex уже свыше 10 лет обеспечивает полный привод от внедорожника до суперкара. Как это было... 

Что такое «квадратный» двигатель?

Что такое «квадратный» двигатель?

Часто ли Вам приходилось, изучая характеристики автомобиля, отмечать для себя непонятные, и, соответственно, ненужные на первый взгляд данные? Думаю, да :) Что Вы, например, думаете о таких параметрах двигателя, как «ход поршня» и «диаметр цилиндра»? Наверное, что это размеры для особо одаренных конструкторов, или... это просто размеры. Оказывается, эти параметры могут многое рассказать о двигателе. Очень многое!

Дизельный двигатель: экологическая эволюция

Дизельный двигатель: экологическая эволюция

Техника продолжает развиваться быстрыми темпами. Дизельный двигатель, который всегда подкупал своей простотой, оброс новыми компонентам и превратился в высотехнологичный агрегат. Зачем все это? Задумайтесь над следующим фактом: с 1990-х годов отработанные газы дизельного двигателя стали на 90% чище! Инженеры прилагают огромные усилия для защиты нашего здоровья, давайте посмотрим, что для этого было разработано в последнее время. 

HDI

HDI

Коммерческое название используемое группой PSA Peugeot Citroën для обозначения двигателей, оснащенных прямым впрыском топлива.

Автомобильный свет

Автомобильный свет

Автосвет прежде всего влияет на вашу безопасность. Усталость глаз, способность заблаговременно увидеть препятствие, видимость вас другими участниками движения все это составляющие Вашего...

Vti

Vti

В двигателях Vti привычная цепочка «впускной распределительный вал - коромысло - клапан» была дополнена эксцентриковым валом и промежуточным рычагом.

Минимальный размер протектора

Минимальный размер протектора

По всей Европе минимальная глубина протектора для летних и зимних шин составляет 1,6 мм

Вас могут заинтересовать мотоспорт, автомобильный спорт на портале спортивные клубы, а также фитнес клубы Киева.
Использование материалов autoexpert.in.ua разрешается при условии ссылки (для интернет-изданий - гиперссылки) на www.autoexpert.in.ua. Материалы, отмеченные знаком "Реклама" публикуются на правах рекламы.
Разработка сайта